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Abstract. This paper demonstrates an architecture for suspending and resuming 
methods in Java using a restricted form of continuation passing style (CPS) 
transformation. It describes Kilim1, a toolkit to portably weave threads of 
control called Fibers, through Java code. The chief contributions of this paper 
are the set of design choices made for both space and time efficiency in getting 
one-shot continuations to work on the JVM (in some cases, 60x faster than 
competing approaches) and to address some tough issues traditionally passed 
over by others, such as handling of local subroutines and constructors. We are 
able to support hundreds of thousands of threads of control with switching 
times of the order of 3 to 4 μs on a low-powered laptop with Sun’s JVM. 
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1  Background 

It is almost a truism nowadays that “concurrent programming is hard”, that it is 
error-prone and not scalable. Many in the research community have repeatedly 
pointed out that it doesn’t have to be this way [7], that both problems are due to 
shared-state concurrency and not due to multiple threads of control. The other 
generally accepted notion is that threads are heavyweight. Again, it doesn’t have to be 
this way, as many real industrial implementations such as Erlang [18] and Windows 
Fibers [12] and the Singularity project at Microsoft [21] have demonstrated. 

Actors (also active objects) are a different (and far saner) way to deal with 
concurrency. They encapsulate data, code and a thread of control of their own and 
communicate by sending messages, like mini processes hooked together using pipes. 
The Kilim project at the University of Cambridge seeks to introduce Java 
programmers to the joys of active objects and message passing concurrency. 

This paper concerns itself with the issue of making possible hundreds of thousands 
of lightweight threads of control, one per actor; we consider a thread lightweight if a 
programmer can start one without much ado as with Erlang processes or Ada tasks. 
Threads in Java,  .NET and pthreads package all fail this test, limiting us to a few 
hundred threads per operating system process. 

We want each active object to be able to make blocking calls such as sleep and 
receive without consuming a heavyweight Java thread. The traditional approach of 

                                                             
1 A Kilim is a Turkish carpet where   the fibers are woven tightly to create a pileless (flat) rug. 
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structuring the code in a callback-oriented style results in the programmer having to 
manually save relevant data into a global or a callback data structure before unrolling 
the stack. Not only is it tedious to program, it obfuscates flow of control. 

This paper describes in detail a way of portably transforming straightforward 
sequential code containing blocking primitives into one that allows it to voluntarily 
suspend itself and to cede control to another runnable actor.  

2  Kilim 

The Kilim package supplies a Weave tool that recognizes invocations of blocking 
methods and transforms the code in the caller. It is a simple batch process that works 
directly on java bytecode: 
 
java kilim.Weave –d destdir classnames ... 
 
How does it know which methods are pausable (can potentially block) and which 

can’t? A method is pausable if it invokes the static method pause() of a class called 
kilim.Fiber, or calls another pausable method, or overrides a pausable method; 
the notion of being pausable is thus an interface contract, similar in spirit to a checked 
exception.  In order to avoid having to analyze the program as a whole or to maintain 
a database of pausable methods, we require the programmer to explicitly mark a 
method with a @Pausable annotation. This is an artificial restriction that can be 
eased within environments such as Eclipse.  

2. 1  Transforming the Code 

The transformation is conceptually simple and is shown in the next listing2, with the 
original on the left and the transformed code on the right. In this example, a() calls a 
pausable method b(). Code injected in the three areas marked as prelude, pre-call 
and post-call helps the method pack up its local operand stack, its registers and the 
location of the program counter and return a status to its caller, which in turn does the 
same thing.  Each method gets an extra argument of type Fiber; it is this that collects 
information about each activation frame as the stack is unwound and also represents 
an out-of-band channel of information that tells a caller whether its callee has signaled 
a pause or whether it has returned normally. The fiber is thus a continuation object 
that has all the information required to restore the call hierarchy and the data in the 
stack and registers, to allow the actor to resume from where it left off.  

The injected code in the prelude consults the fiber and starts either at the original 
starting point START in the normal case or jumps straight to the pre-call stage of b() 
when being resumed. All pausable method invocations are sandwiched between calls 
to Fiber.down and Fiber.up; these help the fiber keep track of the current 

                                                             
2 Note that we show only the transformation of a(). The one for b() would be 

very similar. The transformation is on bytecode, hence the use of gotos. 
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position in the call hierarchy and ensure that a copy of the current activation frame’s 
program counter (pc) and status are readily available as member variables of the Fiber 
object. The post-call section examines the fiber’s status after b’s return. The status 
conveys two orthogonal pieces of information: (i) whether or not b() wants to yield 
mid-flow and (ii) whether we already captured the current activation frame’s state in 
an earlier suspend/resume cycle. 

 
// original 
@Pausable 
void a() {  
  x = ... 
  b(); // b is pausable 
  print (x); 
} 

 

// transformed code 
void a(Fiber f) { 
    switch (f.pc) {  // prelude 
   case 0: goto START; 
   case 1: goto CALL_B} 
  START: 
   x = ... 
 CALL_B:           // pre_call 
   f.down()   
   b(f); 
   f.up()          // post-call 
   switch (f.status) { 
   case NOT_PAUSING_NO_STATE: 
      goto RESUME 
   case NOT_PAUSING_HAS_STATE: 
     restore state 
     goto RESUME 
   case PAUSING_NO_STATE : 
     capture state, return 
   case PAUSING_HAS_STATE: 
     return 
   } 

   RESUME: 
   print (x); 
} 

 
There are several optimizations in this process. First only those methods that 

contain invocations to pausable methods are modified (unlike typical CPS 
transformations). Second, live-variable analysis is performed to ensure that only those 
variables used downstream after a resumption point are captured. Third, the flow of 
constant values and of duplicates through the registers and stack is tracked. Clearly, 
these don’t need to be saved; at resumption time, these are restored swiftly using JVM 
instructions that can push constants. Fourth, return is used to unwind the stack as 
opposed to using exceptions as a longjmp mechanism because exceptions are 
expensive by a couple of orders of magnitude. Not only do exceptions have to be 
caught and rethrown at each level of the stack chain, they clear the operand stack as 
well. This unnecessarily forces one to take a snapshot of the operand stack before 
making a call assuming optimistically that the callee is going to block.  
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2.2  Custom State objects 
 
Each call site may have its own set of data items (some primitive types, some 
references) to be saved and restored. How do you store say, one object, two integers 
and one double in one place, and a single integer at another call site? It is expensive to 
box all primitive types and store them into an array of Objects.  

We decided instead to take the approach of creating a custom State class to store 
exactly what is needed, one field per data item.  Two such classes are shown next.  
The fiber that’s passed down a call hierarchy accumulates a linked list of these state 
objects as the stack is unwound. 

 

class S_I extends State { 
   int f0; 
} 
 

Class S_OI2D extends State 
{ 
  Object f0; 
  int    f1; 
  int    f2; 
  double f3; 
} 

 
The novel part of this scheme is that the class names and the data layout are 

canonical; any call site that requires a single integer to be saved (as with a() in the 
previous example) will save it in an instance of class S_I.  At first, it seems like this 
scheme would generate hundreds of such custom classes, one per pausable method 
invocation site, but an analysis of the JDK and several popular application servers 
show surprisingly low variation. The performance of this scheme is on par with other 
approaches that use arrays for each primitive type and one for reference types, but its 
chief advantage is that the code that saves and restores state doesn’t need to worry 
about array overflow or the fact that arrays once grown needlessly occupy space. 

3  Living with the JVM Verifier 

The JVM verifier performs type and liveness analysis to ensure that the operand stack 
has the same number and type of data items independent of the path taken to get to a 
particular point and that a register or a stack element has been properly initialized 
with the correct type before it can be accessed. This means that our simple prelude 
shown earlier cannot arbitrarily jump into the middle of code. We solve this by having 
the prelude insert dummy constants of the appropriate type to fix the stack before 
doing the jump. We prefer not to restore the real state unless absolutely necessary (of 
course, in the rare but worst case, we have to pop off the dummy constants and insert 
the real state before resuming).  

The post-call stage similarly ensures the stack has exactly one item of the 
appropriate return type before executing return. In the case of a pausing return, 
the returned value is a dummy constant of the method’s return type. 
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3.1  Java Subroutines and jsr 

Most JVM instructions are very simple to handle from the point of view of type and 
data flow analysis. The jsr instruction (“jump to subroutine”) is a notable exception 
that causes headaches well in excess of its usage. 

The Java Virtual Machine specification has an ill-defined notion of a local 
subroutine (different from a method). A subroutine is intended to support the 
try/catch/finally construct where the block in the finally section must be executed 
regardless of whether the try block completed normally or threw an exception that 
may or may not have been caught. In all three cases, the JVM specification suggests 
that the compiler emit the finally block as a subroutine, to which control can be 
transferred using a special jump instruction called jsr. A corresponding ret 
instruction is used to return to the instruction following the jsr. 

The problems with jsr are numerous and well documented [11], so we will be 
brief. The instruction pushes a JVM internal address in the stack that is subsequently 
used by ret. This internal address is treated differently from other data types; it can’t 
be stored in an instance variable, for example. This means that if a pausable method is 
called within a subroutine, we won’t be able to jump directly to it in the prelude 
because we’ll soon run into a ret instruction that expects an address to return to.  

There is another problem: traditional liveness analysis (that figures out which 
values are still used downstream) is only concerned with intra-procedural data flow, 
not inter-procedural; that is, it can deal with hard-coded jump labels, but not a ret 
instruction that says “go back to where you came from”.  

Our solution was to inline (and thus duplicate) subroutines calls. As it turns out, it 
isn’t as bad as it sounds; most virtual machines do the same thing internally and 
perhaps more importantly, most modern java compilers don’t emit the jsr instruction 
any more.  

3.2  new Challenges 

The new expression in Java is split in two parts at the bytecode level; the first part 
allocates an empty object, the second part calls the constructor.   

; new Foo(10, bar()) is translated to 
new Foo        ; allocate object 
ldc 10         ; load 10 
invokestatic bar  ; call bar(), which returns int 
invokespecial Foo.<init>(II) ; call constructor 

 
The JVM tracks the fact that the empty object is uninitialized prior to the 

constructor’s invocation. If bar() is a pausable method, we cannot have the prelude 
jump directly to it because the JVM prevents any jumps to a target between a new 
and the corresponding constructor. Our solution is equivalent to an ANF 
transformation, where 

new Foo(10, bar()) 
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is translated to: 

tmp = bar() 
new Foo(10, tmp) 

The call to bar can now be paused.  
 

4   Performance 

We compared Kilim’s Fibers to the JavaFlow project (discussed later) currently in 
development under the aegis of the Apache Jakarta project. These tests were 
performed on a 1.33 GHz Apple PowerBook with 1G RAM, running Mac OS X 
(10.4).  

The following test shows a simple micro-benchmark that has a() calling b() in a 
loop 100000 times, with the times shown in milliseconds. This test measures the 
overhead of winding and unwinding the stack. b() manipulates three data items 
before and after the call to pause() one long type and two strings (one of which is a 
duplicate of the other). The first column shows the timings of a method that is not 
pausable but does the same work as b(), the second and third show the timings of 
b() when it pauses on every iteration and when it doesn’t pause.  
 

Pausable Times in 
μs. Lower is 
better.  

Not 
pausable Not 

pausing 
Pausing 

Kilim 21 29 156 
JavaFlow 37 29 7829 

 
JavaFlow (discussed in the next section) is quite a bit slower when pausing: 78 μs vs. 
Kilim’s 1.5 μs per iteration. The reasons for this are discussed later. 

The next measurement shows how the two stack up (pun intended) with b() 
recursing to a stack depth of 5 and 10, the numbers showing elapsed time in 
milliseconds measured over 10000 iterations.  
 

Pausable Times in 
μs. Lower is 
better 

Stack 
depth 

Not 
pausable No 

pause 
Pause 

Kilim 5 8 72 866 
JavaFlow 5 57 53 15773 

Kilim 10 14 142 1041 
JavaFlow 10 109 113 27438 
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This shows that Kilim is roughly 20x faster than JavaFlow on this benchmark. 
 

The comparison to non-pausable methods is not strictly a fair comparison in the 
tests above because we measured it without running it through the weaver, merely to 
study the overhead of adding the extra code. For a true comparison, one must 
compare it to a hand-coded state machine that actually implements the same 
functionality. In practice, the overhead of pausing is dwarfed by the other things a 
system needs to do and is round-off error when used in the context of network or 
disk–intensive split phase operations 

 

5  Discussion  

There are two popular ways of building suspend/resume systems; one is continuations 
and the other is coroutines. 

There are several reasons why CPS (continuation passing style) transformation 
runs into rough weather in the context of the Java VM. First, CPS transformation 
modifies each procedure such that it never returns; it jumps ahead to the next 
procedure. This process doesn’t need a stack and indeed, is quite at odds with an 
environment that forces a stack on it, as is the case with a JVM. The JVM architecture 
is quite stack-centric; security on the JVM relies on stack inspection and exception 
handlers are installed for exceptions thrown from within a stack hierarchy.  CPS 
transformation also relies on a uniform transformation of all code, which would 
render reflection impossible. 

As for coroutines. Ana de Moura et al’s paper [13] discusses a taxonomy of 
coroutines and presents the argument that a certain class of them (“stackful”) is 
equivalent to one-shot continuations. In their taxonomy, the continuations presented 
in this paper are stackful (because we suspend and resume a nested call hierarchy) and 
asymmetric (the Fiber API implies a caller/callee relationship). The Kilim framework 
also supplies an active object framework built atop the Fiber framework that offers 
fully symmetric support. 

Coroutines and continuations can be implemented very efficiently in a language 
such as C that has direct access to memory, but even the C programming model forces 
a stack view of things. This is the reason for Haskell’s GHC compiler to supply a Perl 
script called “the evil mangler” to hack GCC’s output to make it support tail-calls.    

We have considerably less leeway with the JVM that does not allow any form of 
stack manipulation (such as swizzling stack pointers), which necessarily forces us into 
the considerably more inefficient route of rewinding and restoring the stack. Within 
these constraints, we have focused our attention on maximizing run-time 
performance.  

That said, the portability of our approach allows this framework to be readily used 
in a wide-variety of applications that have built-in latencies due to human interaction 
and/or networks; examples are web-servlet frameworks, workflow engines and user 
interfaces. The approach can even be used in such a heavily constrained as the Java 
applet sandbox provided by a web browser. 
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We have deliberately chosen not to expose fibers as a first-class feature although 
that functionality is there for the taking. Our chief preoccupation is to get many 
threads of control that we intend to schedule automatically and allow them to be 
individually cancelable or upgradeable from a management console. These properties 
are difficult to achieve if the code is in direct control of yielding.  Besides, it has been 
our experience that programmers find it difficult to comprehend and debug the 
generality of first class continuations, a feeling supported by the number of tutorials 
on the subject. 

The ability of continuations to translate a call chain into a list of State objects on 
the heap has tempted some to use them for serializing threads. We are skeptical of this 
particular application for a number of reasons, mainly because there often are non-
serializable objects such as database connections and sockets that can’t be packaged 
away. 

6   Related Work 

6.1   Lightweight Threads 

There have been a number of projects that create fast, lightweight threads at a lower 
level. Capriccio 12 is a notable example. They modified the portable pthreads library 
to avoid massive pre-allocation of heap/stack space, relying instead on a static 
analysis of code to figure out the appropriate size and the appropriate locations in the 
code to allocate more heap space. It would be nice to have this facility available in all 
JVMs along with tail–call optimization. 

6.2  First-Class Continuations 

Continuations are powerful constructs that can be used as primitives to create all 
forms of branching, including portable user-level threads, exception handling, 
backtracking and others. Much literature exists on the properties of continuations, 
their taxonomy and on compiling with continuations [3]) 

Scheme and Standard ML are among many functional languages to support first-
class continuations in the form of call/cc (call with current continuation). 
Implementations of these languages in Java have run into the constraints imposed by 
the JVM -- JScheme, JRuby, Kawa and Scala all punt on this feature to various 
degrees. Wadler et al also reflect on this aspect [6]. 

Pettyjohn et al [1][2] prove and demonstrate a technique for achieving first-class 
support for continuations in environments that don’t support stack inspections and 
manipulation, such as Java and .NET. They also generalize all previous approaches of 
achieving continuations on the JVM. Their basic idea is to break up the code into 
fragments (as top level methods) where the last instruction of any fragment is a call to 
the next fragment in the chain. Correspondingly, they have specialized continuation 
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objects that maintain the state needed for each fragment and an overridden Invoke 
method to invoke the corresponding fragment. It is structurally similar to our solution, 
with a generated State class per fragment that knows exactly which fragment to 
invoke.  

Their approach while theoretically sound is inefficient and incomplete, as indicated 
by the prototype [2]. It is inefficient because it uses exceptions to capture state 
although the authors note that one could use distinguished return values or some out-
of-band signal instead to indicate pausing. Other inefficiencies include creating a 
custom object per call invocation site, splitting the code into top-level procedures 
which results in loops being split into virtual function calls and the stack restoration 
involves a recursive invocation of Continuation frames, which means there are two 
virtual function calls for every one in a scheme that already splits up into many 
fragments. The transformation also incurs a function call’s overhead on every 
“return”. 

Their suggestion of distinguished return values pose the problem that you need to 
introduce a return type for methods that were originally void and you also have the 
problem of separating an ordinary value returned by the application from a 
distinguished value. 

The paper also does not tackle code transformation in the presence of exception 
handlers and java subroutines, the traditional stumbling blocks, but there is no reason 
why our techniques can’t be employed. 

Their solution isn’t efficient for the JVM because they rely on the JVM to provide 
tail-call optimization (the last statement in each fragment is a method call to the next 
fragment).  

These problems are identifiable in earlier approaches also.  
There are three frameworks that transform Java bytecode internally into a style 

similar to ours, but don’t surface it as a first class primitive. They are RIFE [14], 
PicoThreads [24] and JavaFlow [23], the last being the most promising and under 
active development.  

The JavaFlow project uses thread-local variables to pass the continuation instead of 
modifying method signatures, as we do. While clean, this approach is error-prone 
because in the absence of any information from the interface (or some global 
knowledge of all the classes in the program) it is impossible to know whether the 
called interface or virtual method is pausable or not. A non-transformed piece of code 
would not know to look for yielding returns. In our case, the verifier would refuse to 
load the class because of the signature mismatch.  

JavaFlow correctly transforms a method if it can reach a suspend() invocation. 
But it unnecessarily transforms all non-pausable methods reachable from there as 
well, leading to substantial code bloat.  

None of these projects do liveness analysis as of this writing. This means they must 
store all local variables regardless of whether they will be used after resumption. 
Analysis of some popular Java projects and the JDK indicate that only about 30-40% 
of the information on average is used across method invocations.  Finally, none of 
these projects handle subroutines and constructor calls with pausable methods. It is 
worth noting here that we explicitly disallow pausable methods within constructors, 
because an object should not be receiving messages until it is fully initialized, but we 
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do allow a pausable method invocation in an expression that supplies a parameter to 
new. 

6.3   Bytecode Analysis and Insertion 

Xavier Leroy’s paper [11] neatly sums up all the challenges of bytecode 
verification and provides formalizations and algorithms for doing type analysis. The 
Kilim weaver does value analysis in addition to types, to track duplicate values and 
constants. We settled on the ASM toolkit [17] (in preference to SOOT and BCEL) for 
its speed and compactness, but used our own verification and analysis engine.  

7  Future 

In order to make an active object framework a compelling alternative to the traditional 
locking and shared-memory mindset, we need to have fast and lightweight threads. 
Speed and portability are usually at odds with each other. Our approach works readily 
on cell phones and big iron. On the speed end of the spectrum, there is Occam 19, 
with process creation times in the 20 ns range on an 800 Mhz Pentium III, but with far 
less portability. The search for a happy medium will be multi-pronged; we are 
investigating modifications to the JVM and to the GCJ framework (GNU compiler for 
Java 20), whilst exposing a consistent interface to the programmer. As the American 
baseball player Yogi Berra once said, “When you come to a fork in the road, take it”. 
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